References
/1/ Abbott, M.B., Bathurst, J.C., Cunge, J.A., O'Connell, P.E., and Rasmussen, J. (1986): An introduction to the European Hydrological System - Système Hydrologique Européen, SHE, 2: Structure of a physically-based, distributed modelling system. J. Hydrol., 87, 61-77.
/2/ Abbott, M.B. and Cunge, J.A.(1982): Engineering Applications of Computational Hydraulics, Vol. I. Pitman Advanced Publ. Program, London.
/3/ Allen, G. R., Pereira, L. S., Raes, D and Smith, M. 1998. ''Crop Evapotranspiration-Guidelines for computing crop water requirements.'' FAO Irrigation and Drainage Paper 56. FAO, Rome, Italy, 78-86.
/4/ Ammentorp, H.C., A. Refsgaard (1991): Operationalizing a three-dimensional solute transport model (in Danish). Report M4/7. Landfill project. Danish Environmental Protection Agency.
/5/ Andersen, J., Refsgaard, J.C. and Jensen, K.H. (2001): Distributed hydrological modelling of the Senegal River Basin - model construction and validation, in Journal of Hydrology, v247, p200-214.
/6/ Bear, J (1979): Hydraulics of groundwater. McGraw-Hill Inc., 567 pp.
/7/ Bear, J. and A. Verruijt (1987): Modeling Groundwater Flow and Transport. D. Reidel Pub. Com., Dordrecht, Holland.
/8/ Boesten, J.J.T.I. & van der Linden, A.M.A., 1991. Modelling the influence of sorption and transformation on pesticide leaching and persistence. J. Environ. Qual., 20, 425-435.
/9/ Brouwer, C., & Heibloem, M. (1986). Irrigation water management: irrigation water needs. Training manual, 3. FAO, Rome, Italy.
/10/ Brusseau, M. L., 1995: The effect of nonlinear sorption on the trans-formation of contaminants during transport in porous media. Journal of Contaminant Hydrology, 17, p 277-291.
/11/ Burnett, R.D. and E.O. Frind (1987): Simulation of contaminant transport in three dimensions. 2. Dimensionality Effects. Water Resour. Res., 23(4), 695-705.
/12/ Butts, M. B., Payne, J.T., Kristensen, M. and Madsen, H. (2004): An evaluation of the impact of model structure on hydrological modelling uncertainty for streamflow prediction, in Journal of Hydrology, v298, p242-266.
/13/ Camp Dresser & McKee Inc. (2001): Evaluation of Integrated Surface Water and Groundwater Modeling Tools, Internal report, pp35
/14/ Christiansen, J.S., M. Thorsen, T. Clausen, S. Hansen , J.C. Refsgaard (2004), Modelling of macropore flow and transport processes at catchment scale, Journal of Hydrology 299, 136–158
/15/ Chow, T. C., Maidment, D. R. and Mays, L.W., 1988. Applied Hydrology, McGraw-Hill Series in Water Resources and Environmental Engineering, pp.201-210, 257-263
/16/ Crawford, N.H., and Linsley, R.K., 1966, Digital simulation in hydrology: the Stanford Watershed Simulation Model IV: Technical Report no. 39, Department of Civil Engineering, Stanford University, Stanford, CA, 210p
/17/ Ekebjærg, L. and Justesen, P. (1991): An explicit scheme for advection-diffusion modelling in two dimensions. Computer Methods in Applied Mechanics and Engineering, 88 (3), 287-297.
/18/ FAO, 1979. Yield response to water. FAO irrigation and drainage paper no. 33. FAO, Rome Italy.
/19/ Fetter, C.W., 1992: Contaminant Hydrogeology. Macmillan Pub. Com., New York, New York.
/20/ Fleming G., 1975. Computer Simulation Techniques in Hydrology, Elsevier Environmental Science Series
/21/ Freeze, R.A., Cherry, J.A. (1979): Groundwater, Prentice-Hall, Inc., Englewood Cliffs, N.J.
/22/ Freeze, R.A., and Harlan, R.L. (1969): Blueprint of a physically-based, digitially simulated hydrologic response model, in Journal of Hydrology v9, p237-258.
/23/ Graham, D.N. and M. B. Butts (2005): Flexible, integrated watershed modelling with MIKE SHE. In Watershed Models, Eds. V.P. Singh & D.K. Frevert Pages 245-272, CRC Press.
/24/ Hill, M.C. (1990): Pre-conditioned conjugate gradient 2 (PCG2), a computer program for solving groundwater flow equations: U.S. Geological Survey Water Resources Investigations Report 90-4048, 43 p.
/25/ Jarvis, N.J., (1991) MACRO - A model of water movement and solute transport in macroporous soil. Monograph, Reports and disserta-tions, 9. Dept. of Soil Science, Swedish Univ. of Agrig. Sci., Uppsala, Sweden.
/26/ Jarvis, N.J., (1998) Modelling the impact of preferential flow on nonpoint source pollution, In: Physical Nonequilibrium Processes in Soils. Modeling and Application, Ann Arbor Press, Inc, Chelsea, Michigan, pp. 195–217.
/27/ Jarvis, N.J., Hollis, J.M., Nicholls, T.H., Mayr, T., Evans, S.P., (1997) MACRO_DB: a decision-support tool for assessing pesticide fate and mobility in soils. Environmental Modelling and Software 12, 251–265.
/28/ Jensen, K.H., 1983. Simulation of water flow in the unsaturated zone including the root zone. Institute of Hydrodynamics and hydraulic engineering. Technical University of Denmark. Series Paper no. 33, 259pp.
/29/ Jensen, K.H., H.C. Ammentorp and T. Sevel (1984): Modelling solute transport in the unsaturated zone. Nordic Hydrology 15(4/5), 223-234.
/30/ Kaiser-Hill Company (2001): Model Code and Scenario Selection Report Site Wide Water Balance Rocky Flats Environmental Technology Site, Internal Report, pp66
/31/ Kimley-Horn & Assoc. Inc., US Army Corps of Engineers, Jacksonville District, and South Florida Water Management District (2002): B.2 Hydraulics - Final Model Evaluation Report - EAA Storage Reservoirs - Phase 1, public report to the South Florida Water Management District, pp40
/32/ Klein, M., 1995. PELMO - Pesticide Leaching Model, version 2.01. Users Manual. Frauenhofer-Institut für Umweltche-mie und Ökotoxiko-logie, 57392 Schmallenberg
/33/ Knudsen, J., 1985a. WATBAL User’s Guide. Danish Hydraulic Institute, Denmark
/34/ Knudsen, J., 1985b. WATBAL Hydrological Modelling System A Short Description. Danish Hydraulic Institute, Denmark
/35/ Konikow, L.F. and D.B. Grove (1977): Derivation of Equations describing Solute Transport in Groundwater, US.G.S. Water Resour. Invest. 77-19.
/36/ Kristensen, K. J. and S.E. Jensen, 1975. A model for estimating actual evapotranspiration from potential evapotranspiration. Royal Veterinary and Agricultural University, Nordic Hydrology 6, pp. 170-188
/37/ Larsson, M.H., Jarvis, N.J., (1999) Evaluation of a dual-porosity model to predict field-scale solute transport in a macroporous soil. Journal of Hydrology 215, 153–171.
/38/ Leonard, B.P. (1979): A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput. Methods Appl. Mech. Engrg., Vol. 19, pp. 59-98.
/39/ Leonard, B.P. (1988): Simple high-accuracy resolution program for convective modelling of discontinuities, Int. Journal for Numerical Methods in Fluids, Vol. 8, pp. 1291-1318.
/40/ McDonald, M.C., and A.W. Harbaugh (1988): A modular three-dimensional finite difference groundwater flow model: U.S. Geological Survey Techniques of Water Resources Investigations, book 6, chap.A.1, 586 p.
/41/ Middlemis, H. (2004): Benchmarking Best Practice for Groundwater Flow Modelling, report to The Winston Churchill Memorial Trust of Australia, pp45
/42/ Miljøstyrelsen, 1981. The surface water component of an integrated hydrological model. The Danish committee for hydrology. Suså report no. 12. The Danish Environmental Protection Agency, Copenhagen.
/43/ Plauborg, F. and J.E. Olesen, 1991. Development and validation of the model MARKVAND for irrigation scheduling in agriculture. Tidsskrift for Planteavls Specialserie, Beretning S 2113. Danish Institute of Plant and Soil Science. Foulum, Denmark. (In Danish)
/44/ Refsgaard, A., Refsgaard, J.C., Clausen, T. (1993): A three-dimensional module for groundwater flow and solute transport in SHE. Danish Hydraulic Institut - Internal Note.
/45/ Refsgaard, J.C. and J. Knudsen, 1996. Operational validation and intercomparison of different types of hy7drological models, Water Resources Research, 32(7): pp2189-2202
/46/ Refsgaard, J.C., T.H. Christensen and H.C. Ammentorp (1991): A Model for oxygen transport and consumption in the unsaturated zone. Journal of Hydrology, 129, 349-369.
/47/ Refsgaard, J.C. and Storm, B. (1995): MIKE SHE, in Computer Models of Watershed Hydrology, Singh, V.P., Ed., Water Resources Publications, Colorado, USA, p809-846.
/48/ Scheidegger, A.E. (1961): General theory of dispersion in porous media. Jour. of Geophys. Research, Vol. 66, no. 10.
/49/ Thoma, S.G., Gallepgos, D.P., Smith, D.M., (1992) Impact of fracture coatings on fracture/matrix flow interactions in unsaturated porous media. Water Resources Research 28, 1357–1367.
/50/ Thomas, R.G. (1973): Groundwater models. Irrigation and drainage. Spec. Pap. Food Agricultural Organis. No. 21, U.N., Rome.
/51/ Thorsen, M., Jørgensen, P.R., Felding, G., Jacobsen, O.H., Spliid, N.H., Refsgaard, J.C., (1998) Evaluation of a stepwise procedure for comparative validation of pesticide leaching models. Journal of Environmental Quality 27(5), 1183–1193.
/52/ Toride, N., F.J. Leij and M. Th. van Genuchten (1995). The CXTFIT code for estimating transport parameters from laboratory or field tracer experiments. Version 2.0. Research report No. 137. U.S. Salinity Lab-oratory. Agricultural Research Service. USDA, Riverside, California.
/53/ Vested, H.J., Justesen, P. and Ekebjærg, L. (1992): Advection-dispersion modelling in three dimensions. Appl. Math. Modelling, Vol. 16, pp 506-519.
/54/ Villholth, K., 1994. Field and Numerical Investigation of Macropore Flow and Transport Processes. Series Paper no. 57. Institute of Hydrodynamics and Hydraulic Engineering, Technical University of Denmark, 230 pp.
/55/ Vinther, F.P., Eiland, F., Lind, A.-M., Elsgaard, L., (1999) Microbial biomass and numbers of denitrifies related to macropore channels in agricultural and forest soils. Soil Biology and Biochemistry 31, 603–611.
/56/ West Consultants Inc., Gartner Lee Ltd., and Aqua Terra Consultants (2001): Scientific Review of the Integrated Hydrologic Model, IGSW/CNTB121, report prepared for Tampa Bay Water, pp197
/57/ Yan J.J. and K.R. Smith, 1994: Simulation of Integrated Surface Water and Ground Water Systems - Model Formulation. Water Resources Bulletin, Vol. 30, No. 5, pp 1-12.