The Successive Overrelaxation (SOR) Solver

Numerical formulation

Equation (30.1) is solved by approximating it to a set of finite difference equa­tions by applying Darcy's law in combination with the mass balance equation for each computational node.

Considering a node i inside the model area, the total inflow SZ_TechnicalReference00040.jpg from neighbouring nodes and source/sinks between time n and time n+1 is given by:

(30.14)   SZ_TechnicalReference00043.jpg

where SZ_TechnicalReference00046.jpg is the volumetric flow in vertical direction, SZ_TechnicalReference00049.jpg is the volumetric flow in horizontal directions, R is the volumetric flow rate per unit volume from any sources and sinks,  Dx is the spatial resolution in the horizontal direction and Hi is either the saturated depth for unconfined layers or the layer thick­ness for confined layers. See Figure 30.3 and Figure 30.4 for a description of the geometric relationships between the cells.

The horizontal flow components in Eq. (30.14) are given by

(30.15)   SZ_TechnicalReference00052.jpg

where C is the horizontal conductance between any of the adjacent nodes in the horizontal directions.

The horizontal conductance in Eq. (30.15) is derived from the harmonic mean of the horizontal conductivity and the geometric mean of the layer thickness. Thus, the horizontal conductance between node i and node i-1 will be

(30.16)   SZ_TechnicalReference00055.jpg

where, KH is the horizontal hydraulic conductivity of the cell and Dz is the sat­urated layer thickness of the cell.

The vertical flow components in Eq. (30.14) are given by

(30.17)   SZ_TechnicalReference00058.jpg

where Kv is the average vertical hydraulic conductivity between nodes in the vertical direction, and Dzi,j,k and Dzi,j,k+1 are the saturated thicknesses of lay­ers k and k+1 respectively. For the average vertical hydraulic conductivity, Kv, the SOR solver distinguishes between conditions where the hydraulic con­ductivity of layer k is greater than or less than the hydraulic conductivity of layer k+1. These cases are shown in Table 30.1 and Table 30.2.

Table 30.1          For the case when Kk < Kk+1. 

 

Layer k

confined

unconfined

Layer k+1

confined

SZ_TechnicalReference00061.jpg 

SZ_TechnicalReference00064.jpg 

uncon­fined

SZ_TechnicalReference00067.jpg 

SZ_TechnicalReference00070.jpg 

 

SZ_TechnicalReference00073.jpg 

 

Table 30.2          For the case when Kk > Kk+1.

 

Layer k 

confined

unconfined

Layer k+1

confined

SZ_TechnicalReference00076.jpg 

SZ_TechnicalReference00079.jpg 

SZ_TechnicalReference00082.jpg 

SZ_TechnicalReference00085.jpg 

unconfined

SZ_TechnicalReference00088.jpg 

SZ_TechnicalReference00091.jpg 

SZ_TechnicalReference00094.jpg 

SZ_TechnicalReference00097.jpg 

The transient flow equation yields the finite difference expression

(30.18)   SZ_TechnicalReference00100.jpg

where S is the storage coefficient and Dt is the time step. Eq. (30.18) is writ­ten for all internal nodes N yielding a linear system of N equations with N unknowns. The matrix is solved iteratively using a modified Gauss Seidel method (Thomas,1973).

spatial_discretization.jpg

 

Figure 30.3        Spatial discretisation.

vertical_flow_conditions.jpg 

Figure 30.4        Types of vertical flow condition,   a) confined conditions in nodes i and j,   b) unconfined condition in node i,   c) unconfined in nodes i and j,   d) dry conditions in node j and confined conditions in node i.