Click or drag to resize

IStructures Interface

List of structures.

This interface is explicitly defined for supporting COM interop

Namespace:  DHI.Mike1D.StructureModule
Assembly:  DHI.Mike1D.StructureModule (in DHI.Mike1D.StructureModule.dll) Version: 16.0.0.0 (11.1.1.1111)
Syntax
C#
public interface IStructures : IList<IStructure>, 
	ICollection<IStructure>, IEnumerable<IStructure>, IEnumerable

The IStructures type exposes the following members.

Properties
  NameDescription
Public propertyCount
Public propertyIsReadOnly (Inherited from ICollectionIStructure.)
Public propertyItem
Top
Methods
  NameDescription
Public methodAdd
Public methodClear (Inherited from ICollectionIStructure.)
Public methodContains (Inherited from ICollectionIStructure.)
Public methodCopyTo (Inherited from ICollectionIStructure.)
Public methodGetEnumerator
Returns an enumerator that iterates through the collection.
(Inherited from IEnumerableIStructure.)
Public methodIndexOf (Inherited from IListIStructure.)
Public methodInsert (Inherited from IListIStructure.)
Public methodRemove (Inherited from ICollectionIStructure.)
Public methodRemoveAt (Inherited from IListIStructure.)
Top
Extension Methods
  NameDescription
Public Extension MethodBinarySearchIStructure(IStructure)Overloaded.
Searches the entire sorted IListT for an element and returns the zero-based index of the element.

If the key is not found, a negative number is returned, which can be intepreted as the bitwise complement of the interval of indices that the key is in between, i.e.

list[interval-1] < key < list[interval]

(Defined by GenericExtensions.)
Public Extension MethodCode exampleBinarySearchIStructure(FuncIStructure, Int32)Overloaded.
Searches the entire sorted IListT for an element using the provided comparer and returns the zero-based index of the element.

This differs from the "ordinary" binary search in allowing a comparer delegate that defines whether an item is found (returning 0), whether the item in the list is before (<0) or after (>0) that knows how to compare a class with its key. Example, if the list contains classes of type T having an id number and the class is sorted on that id, then the keySelector returns the id number for that class.

Examples
If having a list of doubles, to find 4.5 in the list, use:
int index = list.BinarySearch(d => d.CompareTo(4.5))
(Defined by GenericExtensions.)
Public Extension MethodBinarySearchIStructure(IStructure, IComparerIStructure)Overloaded.
Searches the entire sorted IListT for an element using the provided comparer and returns the zero-based index of the element.

If the key is not found, a negative number is returned, which can be intepreted as the bitwise complement of the interval of indices that the key is in between, i.e.

list[interval-1] < key < list[interval]

(Defined by GenericExtensions.)
Public Extension MethodBinarySearchIStructure, TKey(FuncIStructure, TKey, TKey)Overloaded.
Searches the entire sorted IListT for an element and returns the zero-based index of the element.

If the key is not found, a negative number is returned, which can be intepreted as the bitwise complement of the interval of indices that the key is in between, i.e.

list[interval-1] < key < list[interval]

This differs from the "ordinary" binary search in allowing a keySelectorcomparer that knows how to compare a class with its key. Example, if the list contains classes of type T having an id number and the class is sorted on that id, then the keySelector returns the id number for that class.

(Defined by GenericExtensions.)
Public Extension MethodBinarySearchIStructure, TKey(FuncIStructure, TKey, TKey, IComparerTKey)Overloaded.
Searches the entire sorted IListT for an element using the provided comparer and returns the zero-based index of the element.

If the key is not found, a negative number is returned, which can be intepreted as the bitwise complement of the interval of indices that the key is in between, i.e.

list[interval-1] < key < list[interval]

This differs from the "ordinary" binary search in allowing a keySelectorcomparer that knows how to compare a class with its key. Example, if the list contains classes of type T having an id number and the class is sorted on that id, then the keySelector returns the id number for that class.

(Defined by GenericExtensions.)
Public Extension MethodSortIStructureOverloaded.
Sorts the elements in the entire List{T} using the default comparer.

A quick sort algorithm is used. Quick sort is a un-stable sort algorithm i.e. if two elements are equal their order may not be preserved.

If the provided IList is either an array or a list, the build in sorting method is used (also quick sort).

(Defined by GenericExtensions.)
Public Extension MethodSortIStructure(IComparerIStructure)Overloaded.
Sorts the elements in the entire List{T} using the provided comparer.

A quick sort algorithm is used. Quick sort is a un-stable sort algorithm i.e. if two elements are equal their order may not be preserved.

If the provided IList is either an array or a list, the build in sorting method is used (also quick sort).

(Defined by GenericExtensions.)
Public Extension MethodSortStableIStructureOverloaded. (Defined by GenericExtensions.)
Public Extension MethodSortStableIStructure(IComparerIStructure)Overloaded.
Sorts the elements in the entire List{T} using the provided comparer.

A merge sort algorithm is used. merge sort is a stable sort algorithm i.e. if two elements are equal their order are preserved.

(Defined by GenericExtensions.)
Public Extension MethodSortStableIStructure(ComparisonIStructure)Overloaded.
Sorts the elements in the entire List{T} using the provided comparer.

A merge sort algorithm is used. merge sort is a stable sort algorithm i.e. if two elements are equal their order are preserved.

(Defined by GenericExtensions.)
Top
See Also